
ELECTE
'JUN 1 6 19951 I

Everyday Believability

Garrett A. Pelton Jill Fain Lehman

March 1995

CMU-CS-95-133

CVI

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This paper also appears in the IJCAI-95 workshop on Entertainment and AI/ALIFE.

LT>

This document has been approved
foi public release and sale; its
distributioc is unlimited. Abstract

Believable Agents must be able to handle a large number of goals, opportunistically acting on
them while maintaining a focus of purpose. They also must be able to operate over long life times
without significant performance degradations. We describe in this paper a method of managing an
agent's goals so that the agent can make progress on as many goals as possible, without spending
undue time considering goals that it can't make progress on. The key part of this method is a
way of specializing and generalizing the set of perceptual cues that are used to bring a goal into
consideration by the agent. The method is described via a simple example.

BTIG QUALITY IK'SPB JTED3

This research was supported in part by a grant from Martin Marietta and in part by the Wright Labo-
ratory, Aeronautical Systems Center, Air Force Materiel Command, USAF, and ARPA under grant F33615-
93-1-1330.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either express or implied, of
Martin Marietta or the United States Government.

Accesion For

NTiS CRA&I
DTIC TAB
Unannounced
Justification

By
Distribution/

Availability Codes

Dist

ft-/

Avail and/or
Special

Keywords: Artificial Intelligence, Learning, Plan Execution, Program Transformation, Soar

1 Introduction

Would you be willing to use a travel agent who could schedule trips for at most ten people at
a time? Would you use a stock broker who failed to make a small, simple transaction for you,
because he was waiting for somebody else's large, complex transaction to finish? How would you
feel about a secretary who constantly scheduled other meetings for you during your weekly meeting
with the boss? Behaviors like these from humans would be unexpected and jarring. The ability
to intend to act, delay action, and remember to act when appropriate for large numbers of goals
is an essential characteristic of people performing everyday tasks over long lifetimes. For that very
reason, we contend it is also an essential characteristic of believable software agents. No matter
what their domain of expertise, if they are to live long and useful lives, they must be able to juggle
large numbers of goals of various durations effectively. Without this characteristic, software agents
will be believable as absent-minded, inattentive, or forgetful children, at best.

We have created an agent, Laureli, and an environment, Laureli's World, to address this fun-
damental issue: what structures and mechanisms must an agent have such that she can effectively
juggle large numbers of potentially interacting goals of different durations over a long lifetime? By
effective, we mean that Laureli must continue to act at a reasonable rate, managing her goals so
that she accomplishes most of them in time with the world. Our approach to the complexity of
managing many goals is to pay a computational cost only for those goals Laureli can make progress
on at any particular time. To do this, Laureli suspends goals when a lack of progress is noticed, at
the same time creating a method to reactivate the goal when further progress can be achieved.

A balance must be struck between over-generalization and over-specialization when creating the
conditions for activating a goal. The former causes the goal to entail computational cost when no
progress can be made, the latter can prevent reactivation when progress is expected to be possible.
In this paper we introduce Laureli and her world, and focus on the domain-independent mechanisms
for creating, generalizing and specializing reactivation conditions.

2 Architecture

We chose the mechanisms used to create Laureli so that Laureli, and other agents, might be
able to survive for long periods of time without significant slowdown. An additional criteria was
that the mechanisms be domain independent, so that the essential characteristics outlined in the
introduction should be available across domains as part of the basic architecture of the agent. In
this section we describe the assumptions and architectural constructs our solution requires.

Figure 1 shows a high-level picture of the relevant portions of the agent architecture. We require
six basic components in addition to an external world simulation:1

• A perceptual system

• A motor system
• A working memory connected to the perceptual and motor systems

• A long-term rule-based memory

although Laureli is implemented in Soar [Laird and Rosenbloom, 1987], our list abstracts away from Soar. As
shown, the mechanisms can be specified in a Soar-independent fashion, although it must be admitted that these
mechanisms work very efficiently in Soar, and taken as a whole, Soar is the only architecture that currently provides
all of them.

World

Perceptual
System Short Term or

Working Memory

Percepts

Action
Requests

Motor
System

Working Memory Elements

top-goal

i......' i

Inactive Active Set
Set

Long Term or
Recognitional Memory

If - Then Rules

Figure 1: Architecture supporting Laureli

• An efficient match algorithm that triggers rules by instantiating them with working memory
elements

• A learning mechanism that creates new rules

The perceptual system places a world description in working memory as a data structure of
working memory elements (WMEs). These WMEs describe objects in the world and relationships
between objects. The if part of the if-then rules in the long-term memory are matched against
this description of the world, and any rule that matches can modify the description via its then
portion. Modification can include the addition of goals that the world description evokes. If, in the
service of a goal, certain portions of the working memory are changed (indicated by the grey box
in Figure 1), then these changes are interpreted as an action-request by the motor system, which
passes them on to the external world simulation.

As the figure shows, a goal may reside in any of three areas: the active set in short-term memory,
the inactive set in short-term memory, or in long-term memory. Laureli's behavior at any moment
depends on her top-goal (dotted box in the figure). This is the goal she has deliberately chosen
to pursue during the current processing cycle. The top goal is chosen from among the agent's
active set of goals in short-term memory. Picking a top-goal involves analyzing each active set goal
deciding the goal's importance in relation to other active goals, and deciding whether working on
that goal will interact with other goals in such a way that it should not be picked. We call this
way of managing the set of appropriate goals top-level control of the agent.

The existence of two functionally different memories is key to keeping the agent's top-level
control tractable over a long lifetime. Since the computational cost of making importance and
conflict decisions is exponential in the number of goals in the active set, we want to keep that part
of short-term memory as small as possible. On the other hand, by using the learning mechanism
to move goals into long-term memory, the cost of the match algorithm grows at most linearly in
the number of rules [Doorenbos, 1994]. Keeping a goal in short-term memory in the inactive set is
also more expensive than keeping it in long-term memory because it can increase the combinatorics

Top-level Control

1 Only one goal is actively pursued at a time.

2 Goals are only considered when either
progress can be made or a conflict arises.
Goals that do not contribute to a decision
are not included in the decision process.

3 A single task-independent method is used
to move goals into and out of active set.

3a How to move a goal into and out of the
active set is independent of task features.

3b When to move a goal into and out of the
active set is determined by task features
and the execution situation.

Operating System

1 Only one task can execute on the processor
at a time.

2 Operating systems maintain two lists of
tasks, one with suspended tasks and one
with tasks that are available to become the
actively executing task.

3 A single task-independent method is used
to move tasks into and out of active set.

3a When an event "wakes-up" a suspended
task, the OS simply changes what list it
is on.

3b Specific, hard-coded types of events cause
a task to be suspended or woken up.

Figure 2: Analogy between top-level control and an operating system

of the match process. Thus, the optimal scheme would be a mechanism that keeps all goals in
long-term memory except (1) those that can make progress in the current situation and, (2) those
whose projected continuations create a potential resource conflict with a goal satisfying (1). This
is the essence of our approach.2 The scheme is conceptually similar to Birnbaum's "elaborate and
index" mechanism for recalling goals [Birnbaum, 1986]. The actual movement mechanisms are
described in Sections 3.4 and 3.5.

2.1 Top-level control is like an operating system

The way that moving goals into and out of short-term memory is managed in Laureli is similar
to the way multi-tasking is handled in an operating system like Unix. Figure 2 shows the important
analogies between operating systems and top-level control. The first item shows that both assume
a serial bottleneck in a critical resource. Just as only one task can execute on a serial processor
at a time, only one goal can be deliberately pursued by Laureli at a time. Any parallelism in the
processing of tasks occurs only in the input and output portions of the architecture. In Laureli, the
motor system and perceptual system can operate independently of the top-level control. Likewise,
in a multi-tasking operating system some parallelism can exist in the disk controllers and other
hardware. The important point is that there is one resource in each system where the processing
of tasks is serialized.

Limiting the processing to one goal or task at a time means each system must have a method for
switching its executing goal or task. Item 2 of Figure 2 shows that when switching, both systems
consider only the goals or tasks that can make progress. In the case of an operating system, for
example, you can have many windows on your screen, but the operating system only looks at the
one in which you are typing. The other windows receive no processing; they are tasks that are

2 The current system is an approximation of this optimal scheme in that it uses the inactive set in short-term
memory as a temporary redundant place-holder for goals in long-term memory under some conditions. Because the
use of short-term memory is redundant, the architecture's efficient match algorithm can still be used to move goals
into the active set. There may be some small additional cost to the redundant use of short-term memory, although
we have not yet measured this.

suspended waiting for an external event (typing) to make them active. In a similar way, top-level
control considers only those goals the agent can make progress on when deciding which goal to
pursue. The goals in short-term memory's active set are the goals the agent thinks it can make
progress on. The goals not considered, either in short-term memory's inactive set or in long-term
memory, are called suspended.

Item 2 also refers to the issue of interactions among goals in top-level control and among tasks
in an operating system. Interactions can occur between any goals; the status (active or suspended)
of the goals is not important. Similarly, the status of the tasks is not important in resolving
operating system conflicts such as whether or not another task has entered a mutually exclusive
area. Although we recognize this issue as key, we do not address it at this time.

Item 3 in Figure 2 is where Laureli's top-level control starts to differ from an operating system.
Both have a task-independent way to move goals (or tasks) from active to suspended status and
back. Both define an inability to make progress, or slack time, as one reason to move from active
to suspended status. However, the operating system has a pre-defined set of conditions (like a new
keystroke in a window) that describes when the change from the suspended list to the active list
should occur. In our agent, features of the goal being attempted and the plan chosen to achieve
the goal determine when the goal should be moved back from long-term to short-term memory.
In general, the right set of features has to be determined by analyzing the goal, the plan, and the
situation, and cannot be listed a priori. As a by-product of the analysis process, Laureli learns
a new rule that effectively transfers the goal to long-term memory. The if portion of the rule
encapsulates the analysis of when to reactivate the goal. When the match process can bind the
conditions in the if portion to working memory elements provided by the current world description,
the then portion of the rule is used to place the goal back into short-term memory.

3 Description of Laureli's Behavior

To ground our discussion of how goals change status, we explore two examples of Laureli's
behavior. Laureli lives in the world shown in Figure 3. Day after day, she goes to a meeting at
work and then, later, comes home. To get to the meeting, Laureli walks from the bedroom of her
home to her car in the driveway, gets into the car, drives to the parking lot, and then walks to the
conference room. She follows the inverse path to get home.

So far in her very everyday existence, Laureli has gone to work and come home for more than
300 simulated days. Over the course of that experience, she develops long-term, episodic memories
of all her trips, with each trip identified by a unique constant. Besides distinguishing a trip from
all the other trips of the same type, this constant provides the thread linking the representations
of the goal together as it moves back and forth from short-term memory to long-term memory. We
call a goal with an assigned constant a token goal, as opposed to a type goal (without a constant),
because it represents a particular instance of the type.

The bottom of Figure 3 gives a more detailed description of the goal types as we will use them
in the rest of this paper. Each goal type has an activation stimulus which is the set of features
that have to be present in the perceived world for a goal to be active. As an example, the Goto-
work goal arises whenever Laureli looks at her watch and recognizes it is morning and it is a
weekday. The goals (eg: Drive-close-to-location) that have negated conditions in their stimulus are
subgoals of some other goal. The negated conditions come from a means-ends-analysis difference
analysis [Newell and Simon, 1972]. Each goal type also has an expected completion situation that
indicates that the goal has been completed. The activating situations and the completion situations

Parking Lot

Work

Office

Conference
Room

Goal Type Activation Stimulus Final Situation

Go-to-meeting morning & weekday at conference-room

Go-home evening k at-work at Laureli's bedroom

Drive-close-to-location not (at desired-location) k
parkable-location close-to desired-location k
desired-location far from current-location k

car is near to current-location

close-to desired location

walk-to-location not (at desired-location) k
desired-location near to current-location

at desired location

start-car not(car-running) k car-running is desired car-running

Figure 3: Laureli's world and a selection of Laureli's goals

DURATIONS Activation Stimulus *-
 Task *-

EXAMPLES
Extended Stimulus Tasks

Go to meeting
Self-negating Tasks

Start Car
Extended Response Time Tasks

Go home

Figure 4: Temporal extent of goals compared to temporal extent of activation stimuli

are independent of each other in general, and the consequences of this independence is discussed

next.

3.1 Temporal extent of tasks

In the remainder of this paper, we use the word task to mean the combination of a goal and a plan
chosen to achieve the goal. Thus, each goal in Figure 3 entails a task and this task takes time to
accomplish, i.e. has a temporal extent. In this section, we examine the simplest situations Laureli
might find herself in, where each of Laureli's tasks is pursued to completion without interruption.
By looking at this simple case we can classify the tasks by properties of their temporal extents.

Figure 4 shows all the possible comparisons of a single task's temporal extent to the temporal
extent of the activation stimuli that gave rise to the task's goal. The first column of Figure 4
represents the case where the duration of the activation stimulus exceeds the time it takes to
do the task. An example of this situation in Laureli's world occurs for the go-to-meeting goal
whose completion-situation (at conference-room) is satisfied while its activation-stimulus (weekday
k morning) is also true. Thus, unless a mechanism is added to the architecture shown in Figure 1
to remove this satisfied goal, the goal of going to the meeting will be active even while Laureli is
at the meeting. The mechanism that we use is to mark tasks completed when their corresponding

goal's completion-situation is satisfied. This, in turn, removes the goal from the active set, although
they remain in short-term memory for as long as their activation conditions are true. Of course,
since they are no longer in the active goal set, completed goals do not add to the cost of selecting
the goal for the top-goal slot.3

In the case represented by the second column of Figure 4 (Self-negating tasks), the duration
of the stimulus conditions coincides with the duration of the task. This happens whenever the
outcome of a task negates some stimulus condition. In Laureli's world, for example, part of the
activation stimulus for the goal of starting the car is that the engine is not running. When the
engine is running we simultaneously complete the start car task and negate the engine not running
stimulus. Thus Laureli recognizes the completion of the start engine task, and she deliberately
selects another task to work on. Also, since the completed task's activation conditions are no
longer true, it is automatically removed from short-term memory.

In the final case (Extended Response Tasks), the activation stimulus duration is shorter than
the time it takes to do the task. An example from Laureli's world is the go-home task.4 The
activation conditions include Laureli being at work. Somewhere on the way home Laureli is no
longer considered at-work, it doesn't matter where. The loss of the activation stimulus causes
the go-home goal to be removed from the active goal set. However, even though the activation
stimulus is gone, Laureli doesn't lose her focus on getting home, because the goal of going home is
the currently selected top-level goal (i.e. is in the top-goal slot in Figure 1). Since Laureli hasn't
deliberately changed what she was doing, she continues with the go-home goal. Of course, if Laureli
were to decide to pursue some other goal in the time it takes her to go home, the go-home goal
would need some new activation stimuli to remain active. This is the situation we turn to in the
next section.

3.2 Deliberate Suspension

Most of the goals Laureli (or any reasonable agent) pursues are not pursued myopically to comple-
tion. The first two goals at the bottom of Figure 3, for example, exist for extended periods of time
since, in Laureli's world, it takes 20 minutes to drive to work and back. The driving is modeled
at a very large grain and takes no effort on Laureli's part once she has set the car in motion (it is
more like a taxi ride). It would seem absurd if she sat there simply repeating "go to work, go to
work" until she arrived at the parking lot. Similarly, it would be absurd if she attended to other
tasks while in motion (like planning what will happen in the upcoming meeting) but failed to note
that she had achieved her goal when she arrived at the parking lot.

The generalization of this type of capability is to allow less important tasks some processing
power when a more important task is suspended waiting for some external event to occur. However,
some care must be taken so that the less important task interferes only minimally with the more
important, suspended, task. We don't want Laureli to start driving to the grocery store, or worse,
open the door to get out of the car, while driving to the meeting.

In the architecture of Figure 2, switching from the go-to-meeting goal to some other goal means
3As mentioned in Section 2, goals on the inactive list do carry some computational cost. However, having the

recently completed goals in short-term memory does not seem to be a large issue because the incremental match cost
is small and because the completed goals only persist in short-term memory for a limited time.

4 Obviously, the go-to-work and go-home tasks are symmetric and could both be considered as either extended
stimulus or extended response tasks. We have given them asymmetric activation conditions in order to have a simple
example of each class in this section, and motivate the different solutions to the problem of forming reactivation
conditions in Sections 3.4 and 3.5.

1. Notice Slack time

2. Anticipate expected response, via lookahead in visualized world. This builds the continuation

rule.

3. Remove goal from top-level slot, and prevent re-selection.

4. When expected response occurs, the continuation rule matches making the goal available again

by moving it to the active set.

Figure 5: Slack time suspension procedure

that Laureli has to deliberately remove the go-to-meeting goal from the top-goal slot and inhibit
its reselection as the new top-goal. At the same time, a method needs to be built for bringing the
goal back into the active goal set so that it can be re-selected in the future. We call this entire
removal and re-activation building process suspending the goal. Goal suspension moves the goal
into long-term memory until it is reactivated. The issues in suspending the current top-goal are:

When out - We will use slack time. Slack time is the time between requesting an action and
getting the expected response. In our example, the only instance of significant slack time is

the drive to and from work.

Progress - When the goal gets re-chosen as the top-goal, progress-to-date on that goal has to be
represented. We do not describe the progress mechanisms in this paper.

When in - When the slack time is over. In our example, when the car reaches the destination.
This is not when the suspended goal is chosen again as the top-goal, but instead when the
goal again becomes part of the active set and is, thus, available for selection as the top-goal.

Figure 5 describes at a high level how the suspension of the current top-goal is done. Slack
time is noticed by having an action-request sent through the motor system without recognizing
its expected response in the perceived world. In step 2, the long-term memory rule is built that,
when triggered by the expected response, will make the goal active again. This rule is called the
continuation of the goal. The conditions of the f/portion of the continuation are built by an EBL5-
like process (Soar's chunking mechanism). The learner works with a copy of the world description
that has been modified to look like a future world description via a visualization process. By using a
one-step lookahead in the plan being used to achieve the goal, the EBL process extracts from all the
possible information in the visualized world only those portions pertinent to re-activating the goal.
We expand on the visualization and lookahead processes in Section 3.3. Once the continuation has
been built, step (3) in the suspension process removes the goal from the top-goal slot and prevents
its re-selection. Once step 3 has been done, other goals can contend for the top-goal slot. Of course,
any of those goals may also lead to actions with slack time, continuations, etc. However, when the
world matches the continuation built in step 2, the goal suspended in step 3 will become active

again and can contend for selection as the top-goal of the agent.

3.3 Visualization and Lookahead

The purpose of step 2 in Figure 5 is to build the continuation rule so that, at some time in the
future, the suspended goal can become active again. Lookahead and visualization are the methods

5Explanation Based Learning [Mitchell et al., 1986]

Activation w _^ w ^ ™
Stimulus * *" * *

Task *- ■ ► * r i ► * v r*~
^Slack^ f Slack f f Slack"

Activation Stimulus exists in current Activation Stimulus exists in current Activation Stimulus doesn't exist
(situation and in visualized situation J ^tuation but not in visualized situation in current or visualized ituation ,

<?- ■ sr
Specialization Generalization

Figure 6: Relationships between slack time and activation stimulus conditions

of including domain-specific knowledge in the continuation in a domain-independent way.

Since the learning mechanism must construct rule conditions that will match some future short-
term memory description of the world, we first need to construct a possible version of that future
world description. We call this construction process visualization. Visualization occurs by aug-
menting a copy of the current world description with the expected response of the action-request
that caused the suspension. The expected response is assumed to be available from some memory
of requesting this, or a similar, action in the past.

In general, the visualized world could contain at least as much detail as the world description
currently supported by perception. In addition, visualizing the outcome of the action-request adds
information that is important to continuing the current task. However, with regard to continuing
the task, the visualized world as a whole contains other, unnecessary information. If we included
all of the visualized detail in the conditions for continuation, the resulting rule would be hopelessly
overspecific. Instead, we want to anticipate a world description in which progress on this task can
be made. To focus the EBL process on the correct level of detail, we use the visualized world to
execute a single-step lookahead on the plan for achieving the goal. The learning mechanism then
automatically produces a continuation rule testing only those elements that the system's current
knowledge indicate are critical for making progress.

The lookahead is done in two steps; setting up the goal context, and looking for the next step
in the plan. The visualized world is a complete copy of the short-term memory portion of the
architecture (see Figure 1), including its own top-goal slot. Setting up the goal context means
placing a copy of the real top-goal in the visualized world's top-goal slot. Having the same goal in
the visualized world's top-goal as in the real world's top-goal provides us an index into the current

plan being followed in the real world.

Once the visualized world's top-goal is selected, we can use the situation found in the visualized
world to find the next step in the plan. The search for the next step is encapsulated by the EBL
process into the conditions of the long-term memory continuation rule. Having the same short-term
memory structure in the visualized world as is used in representing the real world means that the
long-term memory rule learned in the visualized world will apply in similar real world situations.

Another way to think about what conditions should be used to reactivate a goal is to focus on
the relationship between the activation stimulus and the state of the world at the end of the slack
time. In Figure 6 we show the possible relationships between the temporal extent of the activation
stimulus and the slack time. If the activation stimuli will exist at the end of the slack time (first
column of the figure), then it will exist in the visualized world and we will be able to specialize these
activation conditions to build the continuation. We will specialize the original activation conditions
by adding some condition that is true in the visualized world (i.e. at the end of the slack time) that
indicates further progress can be made on this goal, and that is not true during the slack time.

Intention to Do Goal
_, , _ . , (create Token
Goal Recognized Go-to-meeting-112)
(morn & wkday

—>
Go-to-meeting)

Start Driving
(Issue start-driving action-request)

Slack Time Recognized
(Terminate Go-to-meeting-112
Build Reactivate Go-to-meeting-134)

At Parking-lot
(Activate Go-to-meeting-134)

At Conf-room
(Recognize completion
of Go-to-meeting-134)

Recognize
Slack time

Modify Visualized
World with result

Lookahead finds
Walk (Conf-room)

Create Visualized
World

Select Go-to-meeting-112
as visualized world's top-goal.
Modify it to be Go-to-meeting-134

Mark Go-to-meeting-112
continued-by Go-to-meeting-134

Continuation Go-to-meeting-134 Remove Go-to-meeting-112
built for Go-to-meeting-112 from top-goal slot

Figure 7: Timeline for the go-to-meeting goal

The other two columns of Figure 6 show cases when the activation stimuli are not true at the end
of the slack time, and therefore are not available in the visualized world. The activation conditions
for the continuation cannot contain the initial activation conditions, for we know they won't hold,
but instead must be formed from some other domain knowledge. We call this case generalization
because it creates an entirely new set of activation conditions for the continuation of the goal. This
new set will match in cases where the original activation conditions would not.

In general, specialization is preferred over generalization as it provides more restriction on when
the goal is in the active set. The generalization procedure produces relatively general activation
conditions for the continuation because it does not use any specialized domain knowledge to pick the
correct set. It just uses the one-step lookahead. Thus continuations generated by the generalization
process might have to go through the specialization process before a reasonably restrictive set of
activation conditions are found. In the next two sections, each of specialization and generalization
is explained via examples in turn.

3.4 Specialization

In the specialization case the activation stimulus exists throughout the slack time. Thus, to work on
some task other than the one associated with the current top goal, we must both suspend the current
top goal and create a continuation which adds conditions to the current activation stimulus. The
extra conditions restrict the goal from being considered during the temporal interval corresponding
to the slack time. As an example, consider the go-to-meeting goal. Its initial activation stimuli are
the descriptors morning and weekday in short-term memory. To take advantage of the time Laureli
is en route to the meeting (the slack time), we want to build a continuation that will re-activate the
go-to-meeting goal when further work on this goal can make progress. It turns out the descriptor
at-work-parking-lot is used in conjunction with the initial activation descriptors. Figure 7 shows
how creation, suspension, and the specialized continuation for this goal occurs.

As expected, morning and weekday lead Laureli to recognize the goal of going to the meeting (A).
As a result, the token goal go-to-meeting-112 is added to the active set, and is subsequently selected
as Laureli's top-goal (§). Sometime later, Laureli issues the start-driving action request ©, and soon
after, recognizes that she is in slack time ©. Laureli now begins the visualization and lookahead
process described above and expanded in the lower timeline of Figure 7. After recognizing slack time
(D, Laureli creates a copy of the current world description ©. She then anticipates the successful
conclusion of the action request, i.e. she imagines herself in the parking lot at work ©. Since the

Intention to Do Goal
(create Token Go-home-145)

Goal Recognized
(eve. & at work -->

Go-home)

®
Not at work

Go-home goal
retracts

Slack Time Recognized
(Terminate Go-home-145 &
Build Continuation Go-home-187)

Start Driving
(Issue start-driving action-request)

At driveway
(Propose Go-home-187)

At bedroom
(Recognize completion of
Go-home-187)

Recognize
Slack time

Modify Visualized
World with result

Lookahead finds
Walk (Bedroom)

Mark Go-home-145
Continued-by Go-home-187

Create Visualized
World

Create
Go-home-187

Continuation Go-home-187
built for Go-home-145

Remove Go-Home-145
from top-goal slot

Figure 8: Timeline of go-home goal

initial activation stimuli are still true in the visualized world (§), they will form the context for the
lookahead and the basis for the continuation (go-to-meeting-134). Since being at the parking lot is
sufficient to enable the next step in Laureli's plan (walking to the conference room) ©, lookahead
will result in at-work-parking-lot being added to the continuation stimuli for go-to-meeting-134.
The conditions and actions form a complete continuation rule that is added to long-term memory
(B). The go-to-meeting-112 is now marked that it is continued by goal go-to-meeting-134 (7). This
results in go-to-meeting- 112's removal from the active set and from the top-goal slot (B), making
pursuit of other goals possible in the remaining slack time. When the car arrives at the parking lot,
the continuation rule matches allowing the go-to-meeting-134 goal to be selected as the top-goal
again (E). Finally, Laureli gets to the conference room and the go-to-meeting-134 goal is recognized
as completed and removed from the active set with no further continuations built (£).

3.5 Generalization

In the case of generalization, the current activation stimuli is not true in the visualized world,
and therefore not expected to be true when slack time is over. Thus, we will have to find some
descriptors in the visualized world that can act as stimuli for the continuation. Since generalization
doesn't rely upon any of the current activation stimuli, it can create a whole new set of activation
conditions for continuation. This is similar to creating a disjunctive set of activation conditions
for the goal. As an example, consider the go-home goal. Its initial activation stimuli are the
descriptors evening and at-work in short-term memory. To take advantage of the time Laureli is en
route to home (the slack time), we want to build a continuation that will re-activate the go-home
goal when further work on this goal can make progress. The descriptor at-driveway-at-home is such
a condition (and will turn out to be the only test on the continuation). Figure 8 shows how the

suspension and generalized continuation of the goal occurs.

When she is at work in the evening, Laureli recognizes that she has a goal to go home @.
As above, the token goal go-home-145 is added to the active set, and is subsequently selected as
Laureli's top-goal (§). Sometime later Laureli issues the start-driving action request ©. Almost as
soon as the driving starts, Laureli is no longer considered at-work, and so the initial activation
stimuli for the go-home goal are no longer true ©. Laureli continues to go home because go-home-
145 is the currently selected top-goal. However, soon she recognizes that she is in slack time ©.
Laureli now begins the visualization and lookahead process described above and expanded in the
lower timeline of Figure 8. After recognizing slack time (T), Laureli creates a copy of the current
world description (2). She modifies this copy with the expected result of the action request ©. Since

10

the activation stimuli are not true in the visualized world, the continuation goal (go-home-187)
does not automatically include any of the activation conditions of go-home-145 (§). The lookahead
can now proceed and finds that when Laureli is at the driveway at home, she should walk to her
bedroom (5). Since the activation conditions are not true in the visualized state, the conditions for
the continuation are just those of the lookahead step. The action component of the continuation
rule is to propose go-home-187 as a new goal. This rule now gets added to long-term memory ©.
Now the go-home-145 goal is marked "continued-by go-home-187" (7). This results in the go-home-
145 goal's removal from the active set and from the top-goal slot (H), making pursuit of other goals
possible in the remaining slack time. When the car arrives at the driveway the continuation rule
applies creating the go-home-187 goal which is selected to be the new top-goal ©. Finally Laureli
gets to her bedroom, and go-home-187 is marked completed and removed from the active set ©.

4 Discussion

We are examining the issues that arise when agents live a long time in a changing environment.
We believe such an agent requires special mechanisms to allow it to focus on only a small set of
its goals at any time. Such mechanisms allow the agent to pursue goals with extended durations
by interleaving their substeps with those of other goal-directed activities, as time permits. The
work described here has much in common with the approach outlined in [Bratman et al, 1988] and
found in systems like HAP [Loyall and Bates, 1993], Runner [Hammond, 1989] and Pareto [Pryor,
1994].

Creation of a method that will dynamically compose the re-activation conditions for a suspended
goal distinguishes this work from HAP, where the programmer designates the reactivation conditions
at design time. Both Runner and Pareto decide how to continue the goal at run-time by analyzing
the goal and choosing from a pre-determined set of re-activation conditions. Neither system can
extend the analysis if the initial analysis produces re-activation conditions that are either too specific
or too general (in fact, they have no mechanism for determining overgenerality or overspecificity).
Laureli can extend its analysis at each instance of suspension by adding or removing domain-
specific conditions in a domain-independent way. This allows the system a limited ability to tailor
reactivation conditions on the fly as the goal moves through different stages across its duration.

Our methodology seems most similar to the way Hammond's Runner suspends goals and rec-
ognizes when they should become active again [Hammond, 1989]. However, Hammond seems to
treat all continuations as generalizations. Once a goal has started in Runner, it seems to continue
independent of its activation stimulus. As a result, Runner needs a domain model that explicitly in-
dicates which pre-conditions for a goal are persistent, etc., in order to decide which conditions make
an appropriate index for his continuation goals. What Hammond is trying to avoid is constantly
being reminded of the goal (an over-general index). In Laureli's agent architecture, the special-
ization mechanism provides a way to add constraint to when a goal is applicable. So if Laureli
gets an over-general continuation (usually built by the generalization procedure) the specialization
procedure will simply add more conditions to it from other future steps in the plan.

Suspending and reactivating goals per se is only one aspect of this work. Of equal concern is
whether we can manage goals in a timely fashion over a long lifetime. At this time, we still have a
non-linear slowdown over a life of 300 simulated days. The non-linear slowdown seems to be due
to some quadratic algorithms in the matching procedure and we are currently investigating their
source. Once we have found the reasons for the quadratic effect, we would expect to see the simple
linear slowdown predicted by Doorenbos' [Doorenbos, 1994] theoretical analysis. Since even this
linear slowdown will prove untenable in the long run, we are currently looking at ways to achieve

11

a sub-linear bound, at the cost of having to actively reconstruct memories for events in the distant
past.

References

[Birnbaum, 1986] L. Birnbaum. Integrated processing in planning and understanding. Technical
Report YALEU/CSD/RR 480, Yale University, 1986.

[Bratman et al, 1988] M.E. Bratman, D.J. Isreal, and M.E. Pollack. Plans and resource-bounded
practical reasoning. Computational Intelligence, 4, 1988.

[Doorenbos, 1994] R.B. Doorenbos. Combining left and right unlinking for matching a large number
of learned rules. In Proceedings of the Twelfth National Conference on Artificial Intelligence
(AAAI-94), pages 451-458, Seattle, WA, August 1994. Soar #94.17.

[Hammond, 1989] K.J. Hammond. Opportunistic memory. In Proceedings of the Eleventh Inter-
national Joint Conference on Artificial Intelligence (IJCAI-89), pages 504-510, Los Altos, CA,
1989. Morgan Kaufmann.

[Laird and Rosenbloom, 1987] A. Laird, J.E. Newell and P.S. Rosenbloom. Soar: An architecture
for general intelligence. Artificial Intelligence, 33(l):l-64, 1987.

[Loyall and Bates, 1993] A.B. Loyall and J. Bates. Real-time control of animated broad agents. In
Proceedings of the Fifteenth Annual Conference of the Cognitive Science Society, Hillsdale, NJ,
June 1993. Lawrence Erlbaum.

[Mitchell et al, 1986] Tom M. Mitchell, R.M. Keller, and S.T. Kedar-Cabelli. Explanation-based
generalization: A unifying view. Machine Learning, 1(1), January 1986.

[Newell and Simon, 1972] A. Newell and H. Simon. Human Problem Solving. Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1972.

[Pryor, 1994] L. M. Pryor. Opportunities and Planning in an Unpredictable World. PhD thesis,
Northwestern University, June 1994. TR-53-94.

12

